Definition 7.11 (Gamma-function):
For $x>0$ define

$$
\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

Remark 7.8:
This improper integral converges as
i) $t^{x-1} e^{-t} \leq \frac{1}{t^{1-x}}$ for all $t>0$,
ii) $t^{x-1} e^{-t} \leqslant \frac{1}{t^{2}}$ for $t \geqslant t_{0}$,
as $\lim _{t \rightarrow \infty} t^{x+1} e^{-t}=0$
\Rightarrow one can write

$$
\begin{aligned}
& \text { One can write } \begin{aligned}
\Gamma(x) & =\int_{0}^{\infty} t^{x-1} e^{-t} d t=\int_{0}^{t_{0}} t^{x-1} e^{-t} d t+\int_{t_{0}}^{\infty} t^{x-1} e^{-t} d t \\
& \leqslant \int_{0}^{\int_{0}^{t_{0}}} \frac{1}{t^{1-x}} d t+\int_{t_{0}}^{\infty} \frac{1}{t^{2}} d t \\
t= & =\underbrace{t_{0} t}_{\text {convergent }} \int_{t_{0}}^{\int_{0}^{1}} \frac{1}{\tilde{t}^{1-x}} d \tilde{F}+\frac{1}{t_{0}} \underbrace{\int_{\text {(see Ex. }}^{\infty} \frac{1}{\tilde{t}^{2}} d \tilde{t}}_{\text {convergent }} \\
& \text { (see Ex. 7.11) }
\end{aligned}
\end{aligned}
$$

Prop. 7.17:
We have $\Gamma(n+1)=n$! for all $n \in \mathbb{N}$ and $x \Gamma(x)=\Gamma(x+1)$ for all $x \in \mathbb{R}_{>0}$.
Proof:
Partial integration gives

$$
\begin{aligned}
& \int_{\varepsilon}^{R} t^{x} e^{-t} d t=-\left.t^{x} e^{-t}\right|_{t=\varepsilon} ^{t=R}+x \int_{\Sigma}^{R} t^{x-1} e^{-t} d t \\
\Rightarrow & \lim _{\substack{R \rightarrow \infty^{\prime} \\
\varepsilon \rightarrow 0}} \int_{\varepsilon}^{R} t^{x} e^{-t} d t=\Gamma(x+1) \\
= & \lim _{\substack{R \rightarrow \infty^{\prime} \\
\varepsilon \rightarrow 0^{\prime}}}\left(-\left.t^{x} e^{-t}\right|_{t=\varepsilon} ^{t=R}\right)+\lim _{\substack{R \rightarrow \infty \\
\Sigma \rightarrow 0}}\left(x \int_{\varepsilon}^{R} t^{x-1} e^{-t} d t\right) \\
= & 0+x \Gamma(x) .
\end{aligned}
$$

As

$$
\Gamma(1)=\lim _{R \rightarrow \infty} \int_{0}^{R} e^{-t} d t=\lim _{R \rightarrow \infty}\left(1-e^{-R}\right)=1
$$

it follows that

$$
\begin{aligned}
\Gamma(n+1) & =n \Gamma(n)=n(n-1) \Gamma(n-1) \\
& =n(n-1)(n-2) \cdot \ldots \cdot 1 \cdot \Gamma(1)=n!
\end{aligned}
$$

Remark 7.9:
The function $T: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ interpolates the factorial (which is only defined for natural numbers). This does not show the uniqueness of the Gamma-function, yet. For this we need the following:
Definition 7.12:
Let $I \subset \mathbb{R}$ be an interval. A positive function $F: I \longrightarrow \mathbb{R}_{>0}$ is called "logarithmic convex", if the function $\log F: I \rightarrow \mathbb{R}$ is convex.
$\Leftrightarrow F$ is logarithmically convex if and only if $\forall x, y \in I$ and $0<\lambda<1$:

$$
F(\lambda x+(1-\lambda) y) \leqslant F(x)^{\lambda} F(y)^{1-\lambda}
$$

Proposition 7.18:
The function $T: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ is logarithmically convex. (Omit the proof here)
Note: Prop. 7.18 shows that T is continuous on $\mathbb{R}_{>0}$ as it is a convex function on an open interval.

Proposition 7.19:
Let $F: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ be a function with the following properties:
i) $F(1)=1$,
ii) $F(x+1)=x F(x) \quad \forall x \in \mathbb{R}_{>0}$,
iii) F is logarithmically convex.

Then $F(x)=\Gamma(x) \quad \forall x \in R_{>0}$.
Proof:
As the Gamma-function has properties i)-iii), it suffices to prove that any function F with properties i) $-i i i$) is unique.
ii) $\Rightarrow F(x+n)=F(x) x(x+1) \cdots(x+n-1)$
for all $x>0$ and all $n \in \mathbb{N}, n \geqslant 1$.
In particular: $F(n+1)=n!\forall n \in \mathbb{N}$.
\Rightarrow it suffices to show uniquenes for

$$
0<x<1
$$

As $n+x=(1-x) n+x(n+1)$, it follows from
iii) that

$$
F(x+n) \leqslant F(n)^{1-x} F(n+1)^{x}=F(n)^{1-x} F(n)^{x} n^{x}=(n-1)!n^{x}
$$

From $n+1=x(n+x)+(1-x)(n+1+x)$ it follows

$$
n!=F(n+1) \leq F(n+x)^{x} F(n+1+x)^{1-x}=F(n+x)(n+x)^{1-x}
$$

Combining the two inequalities, one obtains

$$
n!(n+x)^{x-1} \leqslant F(n+x) \leqslant(n-1)!n^{x}
$$

and further

$$
\begin{aligned}
a_{n}(x) & :=\frac{n!(n+x)^{x-1}}{x(x+1) \cdot(x+n-1)} \leqslant F(x) \\
& \leqslant \frac{(n-1)!n^{x}}{x(x+1) \cdot \ldots \cdot(x+n-1)}=: b_{n}(x)
\end{aligned}
$$

As $\frac{b_{n}(x)}{a_{n}(x)}=\frac{(n+x) n^{x}}{n(n+x)^{x}} \longrightarrow 1(n \rightarrow \infty)$, we get

$$
\begin{equation*}
F(x)=\lim _{n \rightarrow \infty} \frac{(n-1)!n^{x}}{x(x+1) \cdots(x+n-1)} \tag{x}
\end{equation*}
$$

thus F is uniquely determined.
Proposition 7.20:
For all $0<x$ we have

$$
\Gamma(x)=\lim _{n \rightarrow \infty} \frac{n^{!} n^{x}}{x(x+1) \cdots(x+n)}
$$

Proof:
As $\lim _{n \rightarrow \infty} \frac{n}{x+n}=1$, the claim follows for $0<x<1$ from the form (*) obtained in the previous prof.

Furthermore,

$$
\begin{aligned}
\Gamma(y) & =\Gamma(x+1)=x \Gamma(x)=\lim _{n \rightarrow \infty} \frac{n!n^{x}}{(x+1) \cdot \cdots \cdot(x+n)} \\
& =\lim _{n \rightarrow \infty} \frac{n!n^{y-1}}{y(y+1) \cdot \cdots \cdot(y+n-1)} \\
& =\lim _{n \rightarrow \infty} \frac{n!n^{y}}{y(y+1) \cdot \cdots \cdot(y+n-1)(y+n)} .
\end{aligned}
$$

Corollary 7. 2:
For all $x>0$ we have

$$
\frac{1}{\Gamma(x)}=x e^{r x} \prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right) e^{-x / n}
$$

where γ is the Euler-Mascheroni constant.
Proof:
From Prop. 7.20 it follows

$$
\begin{aligned}
\frac{1}{\Gamma(x)} & =x \lim _{N \rightarrow \infty} \frac{(x+1) \cdot \ldots \cdot(x+N)}{N!} N^{-x} \\
& =x \lim _{N \rightarrow \infty}\left(1+\frac{x}{1}\right) \cdots\left(1+\frac{x}{N}\right) \exp (-x \log N) \\
& =x \lim _{N \rightarrow \infty}\left(\prod_{n=1}^{N}\left(1+\frac{x}{n}\right) e^{-x / n}\right) \exp \left(\sum_{n=1}^{N} \frac{x}{n}-x \log N\right)
\end{aligned}
$$

As $\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{x}{N}-x \log N\right)=x \gamma$, ane obtains

$$
\frac{1}{\Gamma(x)}=x e^{\gamma x} \prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right) e^{-x / n}
$$

Example 7.14:
i) We show as an application of Cor. 7.2 that

$$
T\left(\frac{1}{2}\right)=\sqrt{\pi} .
$$

Proof:
We can represent $T\left(\frac{1}{2}\right)$ in two different ways:

$$
\begin{aligned}
& \Gamma\left(\frac{1}{2}\right)=\lim _{n \rightarrow \infty} \frac{n!\sqrt{n}}{\frac{1}{2}\left(1+\frac{1}{2}\right)\left(2+\frac{1}{2}\right) \cdot \ldots\left(n+\frac{1}{2}\right)}, \\
& \Gamma\left(\frac{1}{2}\right)=\lim _{n \rightarrow \infty} \frac{n!\sqrt{n}}{\left(1-\frac{1}{2}\right)\left(2-\frac{1}{2}\right) \cdots\left(n-\frac{1}{2}\right)\left(n+\frac{1}{2}\right)}
\end{aligned}
$$

Multiplication gives

$$
\begin{aligned}
\Gamma\left(\frac{1}{2}\right)^{2} & =\lim _{n \rightarrow \infty} \frac{2 n}{n+\frac{1}{2}} \cdot \frac{(n!)^{2}}{\left(1-\frac{1}{4}\right)\left(4-\frac{1}{4}\right) \cdots \cdot\left(n^{2}-\frac{1}{4}\right)} \\
& =2 \lim _{n \rightarrow \infty} \prod_{k=1}^{n} \frac{k^{2}}{k^{2}-\frac{1}{4}}=\pi_{1}
\end{aligned}
$$

where in the last step we used Wallis' product representation for π. Altogether: $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

Using $\left(n+\frac{1}{2}\right) T\left(n+\frac{1}{2}\right)=T\left(n+1+\frac{1}{2}\right)$, we can obtain from this all values of $T\left(n+\frac{1}{2}\right)$ for all n :

x	$\Gamma(x)$
0.5	$\sqrt{\pi}=1.77245 \ldots$
1	$01=1$
1.5	$\frac{1}{2} \sqrt{\pi}=0.88622 \ldots$
2	$1!=1$
2.5	$\frac{3}{4} \sqrt{\pi}=1.32934 \ldots$
3	$2!=2$
3.5	$\frac{15}{8} \sqrt{\pi}=3.32335 \ldots$
4	$3!=6$

From

$$
\lim _{x \rightarrow 0} x \Gamma(x)=\lim _{x \rightarrow 0} T(x+1)=\Gamma(1)=1
$$

it follows that $T(x)$ behaves asymptotically as $\frac{1}{x}$ for $x \rightarrow 0$.
ii) $\quad \int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.

Proof:
The substitution $x=t^{1 / 2}, d x=\frac{1}{2} t^{-1 / 2} d t$ gives

$$
\int_{\Sigma}^{R} e^{-x^{2}} d x=\frac{1}{2} \int_{\varepsilon^{2}}^{R^{2}} t^{-1 / 2} e^{-t} d t
$$

thus the limit $\Sigma \rightarrow 0, R \rightarrow \infty$ gives

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} t^{-1 / 2} e^{-t} d t=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{1}{2} \sqrt{\pi}
$$

Proposition 7.21 (Stirling):
The factorial has the asymptotic form

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

(where by "asymptotic" we mean here $\lim _{n \rightarrow \infty}\left(\frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}\right)=1$. It is not suggested or required here that the two sequences converge, only their ratio converges.)

Proof:
We define a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ as follows

$$
\begin{array}{rlrl}
\varphi(x) & =\frac{1}{2} x(1-x) & & \text { for } x \in[0,1], \\
\varphi(x+n) & :=\varphi(x) & & \text { for all } n \in \mathbb{Z} \\
& \text { and } x \in[0,1] .
\end{array}
$$

From the trapeze law (Prop.7.15) we obtain

$$
\begin{gathered}
\int_{k}^{k+1} \log x d x=\frac{1}{2}(\log (k)+\log (k+1))+\int_{k}^{k+1} \frac{\varphi(x)}{x^{2}} d x \\
\left(\log ^{\prime \prime}(x)=-\frac{1}{x^{2}}\right)
\end{gathered}
$$

Summation over $k=1, \ldots, n-1$ gives

$$
\int_{1}^{n} \log x d x=\sum_{k=1}^{n} \log k-\frac{1}{2} \log n+\int_{1}^{n} \frac{\varphi(x)}{x^{2}} d x
$$

As $\int_{1}^{1} \log x d x=n \log n-n+1$, it follows

$$
\sum_{k=1}^{n} \log k=\left(n+\frac{1}{2}\right) \log n-n+a_{n}
$$

where

$$
a_{n}:=1-\int_{1}^{n} \frac{\varphi(x)}{x^{2}} d x
$$

Exponentiating both sides, we obtain ($c_{n}=e^{a_{n}}$)
(*) $n!=n^{n+\frac{1}{2}} e^{-n} c_{n}$, so $c_{n}=\frac{n!}{\sqrt{n}} \frac{e^{n}}{n^{n}}$.
As φ is bounded and $\int_{1}^{\infty} \frac{1}{x^{2}} d x<\infty$,
the limit

$$
a:=\lim _{n \rightarrow \infty} a_{n}=1-\int_{1}^{\infty} \frac{\varphi(x)}{x^{2}} d x
$$

exists and therefore also the limit

$$
c:=\lim _{n \rightarrow \infty} c_{n}=e^{a}
$$

We have

$$
\frac{c_{n}^{2}}{c_{2 n}}=\frac{(n!)^{2} \sqrt{2 n}(2 n)^{2 n}}{n^{2 n+1}(2 n)!}=\sqrt{2} \frac{2^{2 n}(n!)^{2}}{\sqrt{n}(2 n)!}
$$

and $\lim _{n \rightarrow \infty} \frac{c_{n}{ }^{2}}{C_{2 n}}=\frac{c^{2}}{c}=c$. In order to compute c_{1} we use Wallis' product representation

$$
\begin{aligned}
\pi=2 \prod_{k=1}^{\infty} \frac{4 k^{2}}{4 k^{2}-1} & =2 \lim _{n \rightarrow \infty} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \ldots \cdot 2 n \cdot 2 n}{1 \cdot 3 \cdot 3 \cdot 5 \cdots \cdot(2 n-1)(2 n+1)} \\
\Rightarrow\left(2 \prod_{k=1}^{n} \frac{4 k^{2}}{4 k^{2}-1}\right)^{1 / 2} & =\sqrt{2} \frac{2 \cdot 4 \cdot \ldots \cdot 2 n}{3 \cdot 5 \cdot \ldots \cdot(2 n-1) \sqrt{2 n+1}} \\
& =\frac{1}{\sqrt{n+\frac{1}{2}}} \cdot \frac{2^{2} \cdot 4^{2} \cdot \ldots \cdot(2 n)^{2}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot \ldots \cdot(2 n-1) \cdot 2 n} \\
& =\frac{1}{\sqrt{n+\frac{1}{2}}} \cdot \frac{2^{2 n}(n!)^{2}}{(2 n)!},
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \text { efore } \sqrt{\pi}=\lim _{n \rightarrow \infty} \frac{2^{2 n}(n!)^{2}}{\sqrt{n}(2 n)!} \\
& \Rightarrow c=\sqrt{2 \pi}, \text { or } \lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n} \cdot n^{n} e^{-n}}=1
\end{aligned}
$$

Note (error estimate):

$$
\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}<n!\leq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{1 / 2 n}
$$

